On the Inclusion of Short-distance Bystander Effects into a Logistic Tumor Control Probability Model

نویسندگان

  • David G Tempel
  • N. Patrik Brodin
  • Wolfgang A Tomé
چکیده

Currently, interactions between voxels are neglected in the tumor control probability (TCP) models used in biologically-driven intensity-modulated radiotherapy treatment planning. However, experimental data suggests that this may not always be justified when bystander effects are important. We propose a model inspired by the Ising model, a short-range interaction model, to investigate if and when it is important to include voxel to voxel interactions in biologically-driven treatment planning. This Ising-like model for TCP is derived by first showing that the logistic model of tumor control is mathematically equivalent to a non-interacting Ising model. Using this correspondence, the parameters of the logistic model are mapped to the parameters of an Ising-like model and bystander interactions are introduced as a short-range interaction as is the case for the Ising model. As an example, we apply the model to study the effect of bystander interactions in the case of radiation therapy for prostate cancer. The model shows that it is adequate to neglect bystander interactions for dose distributions that completely cover the treatment target and yield TCP estimates that lie in the shoulder of the dose response curve. However, for dose distributions that yield TCP estimates that lie on the steep part of the dose response curve or for inhomogeneous dose distributions having significant hot and/or cold regions, bystander effects may be important. Furthermore, the proposed model highlights a previously unexplored and potentially fruitful connection between the fields of statistical mechanics and tumor control probability/normal tissue complication probability modeling.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Radiation-induced bystander effect following hypo- fraction technique of grid therapy by use of sensitive molecular markers

Introduction: Radiation-induced bystander effect (RIBE) is a well-known response associated with the induction of radiation effects in non-irradiated cells via signaling of hit ones. As this so-called phenomenon has been largely investigated in low dose levels, few studies focused on higher dose levels such as grid therapy. Grid therapy or spatially fractionated gri...

متن کامل

An Investigation of the Effects of Raw Garlic on Radiation-induced Bystander Effects in MCF7 Cells

Introduction Radiation-induced bystander effect (RIBE) is a phenomenon in which radiation signals are transmitted from irradiated cells to non-irradiated ones, inducing radiation effects in these cells. RIBE plays an effective role in radiation response at environmentally relevant low doses and in radiotherapy, given its impact on adjacent normal tissues or those far from the irradiated tumor. ...

متن کامل

Experimental Consideration on Height and Distance Effects of Consecutive Small Dam in Trapping of Sedimentation

    Sediment transport is one of the important indicators of rivers in natural conditions, which is affected by the change in geometric and flow characteristics, and is reflected in the alignment or sedimentation of different river routes. Therefore, providing suitable solutions for sediment control and fixing the longitudinal slope of the substrate and preventing sediment transport from upstre...

متن کامل

Evaluation of the Bystander effect caused ultrasound waves on the MCF-7 cell line

Introduction: Non-target radiation effects are damages and effects that occur without the need for direct radiation exposure in cells. Bystander signals cause non-targeted irradiation effect that has been defined as radiation responses in which non-irradiated cells exhibit irradiated effects as a result of signals from adjacent irradiated cells. In this study, the bystander ef...

متن کامل

Tumour radiobiology beyond fractionation

Historically it has been shown repeatedly that single high doses of radiation do not allow a therapeutic differential between tumor and critical normal tissues but dose fractionation does. The purpose of conventional dose fractionation is to increase dose to the tumor while preserving normal tissue function. Tumors are generally irradiated with 2Gy dose per fraction delivered daily to a more or...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2018